Q1. Ans(a)
Old price of 3 apples = Rs 1.25
New price of 3 apples = Rs 1
Percent decrease in price = \(\frac{1.25 - 1}{1.25} \times 100 = 20\% \)

Q2. Ans(b)
Total employees of A = \(500 \times \frac{100}{25} = 2000 \)
Total employees of B = \(252 \times \frac{100}{(100-16)} = 300 \)
\(\therefore \) Total strength of A and B = 2300

Q3. Ans(b)
The weight of boxes are.
1st box = 200 kg
3rd box = \(200 + \frac{25}{100} \times 200 = 250 \) kg
2nd box = \(250 + \frac{20}{100} \times 250 = 300 \) kg
4th box = 350 kg
5th box = 500 kg
Total weight of the heaviest four boxes = 250 + 300 + 350 + 500 = 1400 kg
Total weight of the lightest four boxes = 200 + 250 + 300 + 350 = 1100 kg
Hence, the difference between the heavier 4 and the lighter 4 is 300 kg. Hence, the difference in Average is 75 kg.

Q4. Ans(c)
Monthly saving = \(\frac{48600}{12} = 4050 \)
Monthly salary = \(4050 \times \frac{100}{75} \times \frac{100}{60} = 9000 \)

Q5. Ans(a)
Total amount reinvested by Mr. X = \(\frac{94500}{7} \times 13 \)
= 13500 \times 13 = 175500
Total amount invested by him at starting = \(\frac{100}{130} \times 175500 \)
= 100 \times 1350 = 135000
\(\therefore \) Required amount = \(\frac{5}{9} \times 135000 \)
= 5 \times 15000 = 75000
Q6. Ans (c)
M.P. of mobile handset = \(\frac{3325}{95} \times 100\)
= 3500 Rs.
\[\therefore \text{tax} = \frac{20}{100} \times 3500\]
= 700 Rs.
\[\therefore \text{Total discount} = (3500 - 3325) + 700\]
= 875 Rs.

Q7. Ans (b)
Let the price before increase = x
Then new price = \(\left(\frac{100+20}{100}\right)x = 1.2x\)
\[\frac{115}{100} \times (x \times 24) = 1.2x \times y \text{ (y = new consumption quantity)}\]
y = 23 kg

Q8. Ans (b)
CP of 150 calculators = 150 \times 250 = Rs. 37500
Total CP = 37500 + 2500 = Rs. 40000
MP of 150 calculators = 150 \times 320 = Rs. 48000.
SP after discount = 48000 \times \frac{95}{100} = Rs. 45600.
\[\therefore \text{Percentage profit} = \frac{45600-40000}{40000} \times 100 = 14\%\]

Q9. Ans (d)
CP of 1 toy = (100 + 5 + 27) = 132 Rs.
CP of 50 toy = 132 \times 50
SP of 25 toys = \(\frac{132\times25}{2}\)
Let required percentage = x%
\[\therefore \frac{132\times25}{2} + \left(\frac{100+x}{100}\right) \times (25 \times 132) = \frac{150}{100} \times 132 \times 50\]
1650 + 3300 + 33x = 9900
4950 = 33x
= x = 150%
Q11. Ans(c)
Let no. of students who appeared and qualified from school A be x and y respectively.
For School A, \(\frac{y}{x} = \frac{60}{100} \)
For school B, \(\frac{(1.6y/1.3x) \times 100}{[(16 \times 60)/(13 \times 100)] \times 100} = 73 \frac{11}{13}\% \)

Q12. Ans(c)
Let the total number of students = X
Number of students failing in first subject = 40\% of x
Number of students failing in second subject = 10\% of rest = 10\% (60\%) of x = 6\% of x
Therefore, total number of students failing in both the subjects = (40 + 6) \% of x = 46\% of x
Therefore, students passing in two subjects = 54\% of x
The students passing in remaining subject = 75\% (54\% of x) = \(\frac{81}{2} \) \% of x
Hence students failing in remaining subject = \(\left(\frac{54}{2} - \frac{81}{2} \right) \) \% of x = \(\frac{27}{2} \) \% of x
Therefore, total number of students failing in all the subjects equation (1) + (2) = \(\left(\frac{46}{2} + \frac{27}{2} \right) \) \% x = \(\frac{119}{2} \) \% of x
Number of students failing – Number of students passing = 570 (Given)
i.e., \(\left(\frac{119}{2} - \frac{81}{2} \right) \) \% of x = 570 \(\Rightarrow \) 19\% of x = 570
\(\Rightarrow \) Thus, x = \(\frac{570 \times 100}{19} \) = 3000
Hence, the total number of students are 3,000

Q13. Ans(b)
Let total books = 100
Regional language book = 100 – (20 + 20 + 18) = 42
42 \(\rightarrow \) 29400
1 \(\rightarrow \) \(\frac{42}{29400} \)
100 \(\rightarrow \) \(\frac{29400}{42} \times 100 = 70000 \)
Q14. Ans(c)
Let population = 10,000
Population after first year = 9000
Population after second year = 9000 – 1350 = 7650 Rs.
Population after Third year = 7650 – 1530 = 6120
Given 6120 → 15300
\[\frac{15300}{6120} \times 10,000 = 25000 \]

Q15. Ans(a)
Total CP = 0.9 \times 288 = Rs. 259.2
Total SP = \(\left(100 - \frac{125}{900}\right) \times 288 \times 1.2 = Rs. 297.6 \)
Gain percentage \(= \frac{297.6 - 259.2}{259.2} \times 100 = 14 \frac{22\%}{27} \)

Q16. Ans(d)
Cannot be determined. We do not know whether there are some male employees who have exactly Rs. 8,000 per month as their salary or not.

Q17. Ans(a)
Let the quantity of paint purchased be x kg
Then \((x - 15\% \text{ of } x) = 25 \)
\(\Rightarrow x = 29.41 \) or 30 kg
So, he must purchase 15 cans
Total cost = \((16 \times 15) = \text{Rs. 240} \)

Q18. Ans(d)
Since we do not have sufficient data. Further any value is possible as the required income tax.

Q19. Ans(c)
Required\% = \(\left(\frac{P}{100+P}\right) \times 100 \)%
= \(\left(\frac{20}{120}\right) \times 100 \)% = 16.66%

Q20. Ans(e)
Let the number of fish be x then
\[
\frac{50 \times 100}{x} = \frac{48 \times 100}{x-50}
\]
\[\Rightarrow 50x - 2500 = 48x\]
\[\Rightarrow 50x - 48x = 2500\]
\[\Rightarrow 2x = 2500\]
\[\therefore x = 1250\]

Q21. Ans(e)

<table>
<thead>
<tr>
<th></th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only Badminton</td>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td>Only Badminton TT</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Only TT</td>
<td>20</td>
<td>14</td>
</tr>
</tbody>
</table>

Q22. Ans(a)

Average rate of return = \[\left(\left(\frac{\frac{3}{100} \times \frac{1}{4}}{\frac{2}{3} \times \frac{5}{100}}\right) + \left(\frac{\frac{1}{12} \times \frac{11}{100}}{\frac{1}{12} \times \frac{11}{100}}\right)\right) \times 100 = 5\%\]

Q23. Ans(b)

Let the total number of students appeared = x

Number of Males students appeared = 90% of $x = \frac{9}{10}x$

Number of female students appeared = $\frac{x}{10}$

Number of males passed = 60% of $\frac{9}{10}x$
\[= \frac{3}{5} \times \frac{9}{10}x\]

Number of females passed = 80% of $\frac{x}{10}$
\[= \frac{4}{5} \times \frac{x}{10}\]

Now $\frac{3}{5} \times \frac{9}{10}x + \frac{4}{5} \times \frac{x}{10} = 1240$

$x = 2000$

Q24. Ans(a)
\[\begin{align*}
&\frac{25}{3} \% + \frac{25}{2} \% = 0\% \\
\frac{25}{2} : \frac{25}{3} \\
\therefore \text{Table: Chair} = \frac{1}{2} : \frac{1}{3} = 3 : 2 \\
\text{Let table} = 3x \\
\text{Chair} = 2x \\
\frac{25}{200} \cdot 3x - \frac{25}{300} \cdot 2x = 25 \\
225x - 100x = 15000 \\
125x = 15000 \\
x = \frac{3000}{25} = 120 \text{ Rs,} \\
\therefore \text{Table} = 360 \text{ Rs.} \\
\text{Chair} = 240 \text{ Rs.}
\end{align*}\]

Q25. Ans(e)

Let strength of school in 2000 be 100.
In 2001, strength increased by 10%
\[
\frac{100 \times 110}{100} = 110
\]
In year 2002, strength decreased by 10%
New strength = \[
\frac{90 \times 110}{100} = 99
\]
Again in 2003, it increases by 10%
So, new strength = \[
\frac{110 \times 99}{100} = 108.9
\]
The strength in 2003 is increased by 8.9% as compared to 2000.

Q26. Ans(c)

New area (with errors) = 1.12 \ l \times 0.95 \ b
= 1.064 \ lb
Percent error = 1.064 - 1 = 0.064 \times 100 = 6.4\% = 6\frac{2}{5}\%
Q27. Ans(a)
Let the unit digit = x

\[y^2 = x \](i)

\[(10x + y) - (10y + x) = 54 \]

\[x - y = 6 \](ii)

From (i) and (ii), \(x = 9, y = 3 \)

so the original number = 39

\[35\% \text{ of the number} = \frac{35}{100} \times 39 = 13.65 \]

Q28. Ans(b)
Let no. of voters = x

\[\frac{47x}{100} - \left[\frac{90x}{100} - 60 - \frac{47x}{100} \right] = 308 \]

\[\therefore x = 6200 \]

Q29. Ans(c)
\[
\frac{60A}{100} = \frac{75B}{100}
\]

\[
\frac{A}{100} = \frac{5}{4}
\]

\[\therefore 4 = \frac{x}{100} \times 5 \]

\[x = 80 \]

Q30. Ans(e)
Efficiency in IInd hour = \(60 \times \frac{75}{100} = 45 \) article
Efficiency in IIIrd hour = \(45 \times \frac{140}{100} = 63 \) article
Efficiency in IVth hour = \(63 \times \frac{2}{3} = 42 \) article
Efficiency in Vnd hour = \(42 \times \frac{3}{2} = 63 \) article
So, efficiency is minimum in 2nd and IVth hour.

Q31. Ans(b)
Let \(y \) be the number of registered voters in Mumbai. Then, the information that 60% of the registered voters are from BJP can be expressed as \(0.60y \). From this, it can be stated that \(1.00y - 0.60y = 0.40y \) are from Congress. The percentage of BJP-supporters and the percentage of Congress-supporters who are expected to vote for candidate X can then be expressed as:

\[
0.75 \times 0.60y + 0.20 \times 0.40y
\]

Simplify the expression to determine the total percentage of voters expected to vote for candidate X:

\[
0.75 \times 0.60y + 0.20 \times 0.40y = 0.45y + 0.08y = 0.53y
\]

Hence, 53% of the registered voters are expected to vote for candidate X.

Q34. Ans(d)
Let us assume payment order be Rs. 100

Case 1: successive discount of 10%, 10%, 30%

$$\Rightarrow 100 \times \frac{90}{100} \times \frac{90}{100} \times \frac{70}{100} = \text{Rs. 56.7}$$

Case 2: Successive discount of 40%, 5%, 5%

$$\Rightarrow 100 \times \frac{60}{100} \times \frac{95}{100} \times \frac{95}{100} = \text{Rs. 54.15}$$

For Rs. 100, person can save Rs. (56.7 – 54.15) = Rs. 2.55

Hence for Rs. 10000, he can save

$$= \frac{2.55}{100} \times 10000 = \text{Rs. 255}$$

Q35. Ans(e)

Let no. of student appeared from A = 100, qualified = 55

No. of student appeared from B = 115, qualified = 92

Required percentage = \(\frac{92}{115} \times 100 = 80\%\)

Q36. Ans(d)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>0.75x</td>
<td>x</td>
</tr>
<tr>
<td>Expenditure</td>
<td>0.6y</td>
<td>y</td>
</tr>
</tbody>
</table>

A's saving = (0.75x – 0.6y)

B's saving = (x – y)

Given, 0.75x = 0.8y

Or, 15x = 16y

\[\Rightarrow \frac{A's \ Savings}{B's \ savings} = \frac{0.8y - 0.6y}{16y - y} = \frac{0.2y}{15y} = \frac{3}{1} \]

Q37. Ans(b)

Let the population of male and female in city X be x and y respectively.

Population of males after 3 years = \(x + \frac{8}{100} x = 1.08x\)

Population of females after 3 years = \(y + \frac{20}{100} y = 1.2y\)

ATQ,

\[\frac{1.08x}{1.2y} = \frac{3}{2} \]

\[\Rightarrow \frac{x}{y} = \frac{5}{3} \]

Male and Female population is 1,00,000 and 60,000 respectively
Q38. Ans.(b)
Let the total population of city A and B is 5x and 6x respectively.

Total literate people

<table>
<thead>
<tr>
<th>Total</th>
<th>A (40%)</th>
<th>B (66⅔%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x</td>
<td>2x</td>
<td>4x</td>
</tr>
<tr>
<td>6x</td>
<td>3x</td>
<td>2x</td>
</tr>
</tbody>
</table>

Given 3x – 2x = 600
x = 600

hence, total population of city A = 5x
= 5 × 600
= 3000

Q39. Ans.(b)
Veer total expenditure

= 50% + 50 × \(\frac{50 + 25 + 10}{100}\)%
= 50% + 50 × \(\frac{85}{100}\)%
= 50 + 42.5% = 92.5%

Saving = 100 – 92.5%
= 7.5% = 1800

100% = \(\frac{1800}{7.5}\) × 100
= 24000Rs.

Q40. Ans.(a)
33\(\frac{1}{3}\)% = \(\frac{100}{3}\)% = \(\frac{1}{3}\)

Oranges stolen by thief = \(\frac{1}{3}\)

Rotten oranges = \(\left(1 - \frac{1}{3}\right) \times \frac{30}{100}\)

= \(\frac{2}{3} \times \frac{3}{10}\) = \(\frac{1}{5}\)

∴ Good oranges = \(\frac{2}{3} - \frac{1}{5}\) = \(\frac{7}{15}\)

ATQ,
\(\frac{7}{15}\) → 140

∴ total oranges = \(\frac{140 \times 15}{7}\) = 300

Q41. Ans.(e)
Let monthly salary of Amrit = 100x

Amount invested in house rent = 100x × \(\frac{30}{100}\) = 30x

Remaining amount = 100x – 30x = 70x

Amount invested in Food = 70x × \(\frac{20}{100}\) = 14x

Remaining amount = 70x – 14x = 56x

Amount invested in mutual fund = 56x × \(\frac{25}{100}\) = 14x

ATQ
(14x + 14x) = 5600
x = 200

So monthly salary of Amrit = 100 × 200 = Rs. 20,000

Q42. Ans.(a)
Ratio of salaries of Ritu, Payal and Sakshi in next year = \(3 \times \frac{120}{100} : 5 \times \frac{125}{100} : 7 \times \frac{130}{100}\)
= 72 : 125 : 182

Q43. Ans.(c)
Let Dr. Hariprasad's total wealth = Rs. 100x
∴ Wife’s share = \(\frac{100}{3} \times 100x = \frac{100x}{3}\)
Son’s share = \(\left(100x - \frac{100x}{3}\right) \times \frac{36}{100} = 24x\)
∴ Rest part = \(100x - \left(24x + \frac{100x}{3}\right) = \frac{128x}{3}\)
ATQ,
\(\frac{1}{4} \times \frac{128x}{3} = 64000\)
⇒ \(x = 6000\)
∴ Total wealth = Rs 6,00,000

Q44. Ans.(c)
Let max. marks = 100x
∴ \(34x + 90 = 36x + 72\)
\(x = 9\)
∴ Max marks = 900
∴ Minimum percentage marks to be pass = \(\frac{(34x+90)}{900} \times 100 = 44\%\)

Q45. Ans.(b)
Let the number of books in shelf B be 100.
∴ Number of books in shelf A = 80
On transferring 25% i.e. \(\frac{1}{4}\) of books of shelf A to shelf B.
B = 100 + 20 = 120
Again, on transferring \(\frac{3}{4}\) of books of shelf B to shelf A.
A = 60 + \(\frac{120}{4}\) = 90
∴ Required percentage = \(\frac{90}{180} \times 100 = 50\%\)

Q46. (a)
ATQ—
\(x = \frac{21.6 \times 100 \times 100}{75 \times 64}\)
\(x = 45\)
\(y = \frac{14.7 \times 100 \times 100}{75 \times 56}\)
\(y = 35\)
\((x + y)^2 \times \frac{28}{100} \times \frac{35}{100} = (45 + 35)^2 \times \frac{28}{100} \times \frac{35}{100}\)
= 6400 \times \frac{28}{100} \times \frac{35}{100} = 627.2\)

Q47. Ans(b)
Let total no. of voters = 100x
No of voters who cast their vote = 100x \(\times \frac{80}{100} = 80x\)
Total no of valid voters = 80x \times \frac{90}{100} = 72x

\text{ATQ}
\Rightarrow 72x \times \frac{55}{100} - 72x \times \frac{45}{100} = 36
\Rightarrow 72x \times \frac{10}{100} = 36
\Rightarrow x = 5
\Rightarrow 5x = 500

Q48. Ans. (d)
Let the full marks of exam = x
\text{ATQ} –
222 + 8\% \text{ of } x = 204 + 11\% \text{ of } x
18 = 3\% \text{ of } x
x = 600
So full marks = 600
So, passing marks = 222 + 8\% \text{ of } 600 = 270 marks

Q49. Ans. (c)
Let first number and second number is 100x and 100y respectively.
\text{ATQ},
30\% \text{ of } 100x - 40\% \text{ of } 100y = 12
30x - 40y = 12 \text{ ... (i)}
\text{Given—}
100x - 100y = 60 \text{ ... (ii)}
\text{Solving (i) and (ii)}
100x \rightarrow 120
100y \rightarrow 60
The greatest number \rightarrow 120

Q50. Ans. (e)
Let his salary is = 100x
Amount spent on house rent and food is
\frac{60 \times 100x}{100} = 60x
On house rent \Rightarrow \frac{70 \times 60x}{100} = 42x
On food \Rightarrow 18x
\Rightarrow 42x - 18x \Rightarrow 12000
x = 500
salary = Rs 50000

Q51. Ans (e)
Let copper and zinc in vessel A
= 80x : 20x
= 4 : 1
Let copper and zinc in vessel B
= 62.5y : 37.5y
= 5 : 3
\text{ATQ—}
\frac{5y + 25 \times \frac{4}{5}}{3y + 25 \times \frac{4}{5}} = \frac{2}{1}
\[
\begin{align*}
\frac{5y+20}{3y+5} &= \frac{2}{1} \\
6y - 5y &= 20 - 10 \\
y &= 10 \\
\text{New quantity of mixture in vessel B} &= (5 \times 10 + 20) + (3 \times 10 + 5) \\
&= 105 \text{ kg} \\
\text{Initial quantity of mixture of copper & zinc in vessel A} &= 105 \times \frac{100}{84} \\
&= 125 \text{ kg} \\
\text{Quantity of copper in vessel A} &= 125 \times \frac{4}{5} = 100 \text{ kg} \\

Q52. \text{Ans. (d)} \\
\text{Let total votes be } 6x \\
\text{People who took part in survey} &= 83\frac{1}{3}\% \times 6x = 5x \\
2.5x \text{ claims to vote for } A, \\
0.5x \text{ are uncertain.} \\
\text{People who didn't take part in survey} &= 6x - 5x = x \\
\text{And vote for } A &= \frac{2}{3}x = \frac{2}{3}x \\
\text{Vote for } A, \text{ from people who are uncertain.} &= \frac{1}{5} \times 0.5x = 0.1x \\
\text{Total votes for } A &= 2.5x + 0.1x + \frac{2}{3}x \\
&= \frac{25}{10}x + \frac{1}{10}x + \frac{20}{30}x \\
&= \frac{98x}{30} \\
\text{Votes for } B &= 6x - \frac{98x}{30} = \frac{82x}{30} \\
\text{ATQ} \Rightarrow \frac{98x}{30} - \frac{82x}{30} = \frac{16x}{30} \\
&= 640 \\
&= x = 40 \times 30 = 1200 \\
\text{Hence total votes are } 6 \times 1200 = 7200 \\

Q53. \text{Ans (d)} \\
\text{Let the savings of } A \text{ & } B \text{ be } Rs \ 8x \text{ and } Rs \ 8y \text{ respectively. Then amount invested by } A \text{ in XYZ scheme} \\
&= \frac{37.5}{100} \times 8x = 3x \\
\text{Amount invested by } B \text{ in XYZ} &= \frac{62.5}{100} \times 8y = 5y \\
\text{ATQ} \Rightarrow 6x = 5y \\
x = \frac{5}{6} \text{ y or } y = \frac{5}{6} x \\
\text{Now } B \text{ invested } 50\% \text{ of } (8y - 5y) = \frac{1}{2} \times 3y = 1.5y \text{ in scheme PQR.} \\
\text{A want to invest } 2 \times 1.5y = 3y
His remaining savings = 8x – 3x = 5x
% he could invest in PQR = \(\frac{18x}{5x} \times 100 = \frac{1800}{25} \% = 72\% \)

Q53 Ans.(a)
Let, B’s salary = 100x
⇒ A’s salary = 100x \(\times \frac{80}{100} = 80x \)
B's saving = 100x \(\times \frac{60}{100} = 60x \)
A's saving = 60x \(\times \frac{100}{150} = 40x \)

ATQ,
\(\frac{80x + 60x}{2} = 10,500 \)
⇒ x = 150
A’s expenditure = 80x – 40x = 40x
= 40 \times 150 = Rs. 6000

Q55. Ans.(d)
Male population in city P = 52000 \(\times \frac{7}{13} = 28000 \)
Female population in city P = 52000 \(\times \frac{6}{13} = 24000 \)
Let female population is increased by x% in 2006

ATQ—
\(28000 \times \frac{8}{7} \times \frac{9}{6} + 24000 \times \frac{7}{6} \times \frac{(100 + x)}{100} = 52000 \times \frac{(100 + 475)}{100} \)
\(280x + 280(100 + x) = 71000 \)
280x = 71000 – 64000
280x = 7000
x = 25%

Q56. Ans.(b)
Let total number of students in class A is x and total number of students in class B is y
Girls in class A = \(\frac{2x}{5} \)
Girls in class B = \(\frac{4y}{11} \)

ATQ—
\(\frac{4y}{11} = 2 \times \frac{2x}{5} \)
y = \(\frac{11x}{5} \)
y = 2.2x
Total number of boys in class B
\(= \frac{7y}{11} = \frac{7 \times 2.2x}{11} = \frac{15.4x}{11} = 1.4x \)
Required percentage
Q57. Ans.(b)
Let cost of each mobile be Rs. ‘a’ in 2016 and number of mobiles sold in 2016 be ‘b’
Total revenue generated by store in 2016 = ab Rs.
In 2017 —
Cost of each mobile = 0.75a Rs.
Total revenue generated by store in 2017
\[\frac{105}{100} \times ab = 94.5 \text{ lakh} \]
ab = 90 lakhs ...(i)
Total number of mobiles sold by store in 2017
\[\frac{1.05ab}{0.75a} = 1.4b \]
Given,
Number of mobiles sold in 2017 – number of mobile phone sold in 2016 = 90
1.4b – b = 90
b = 225
Cost price of each mobile in 2016 = \[\frac{90,00,000}{225} = 40000 \text{ Rs.} \]

Q58Ans.(c)

<table>
<thead>
<tr>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>60%</td>
<td>40%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Government Employees</th>
<th>Government employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 × (\frac{20}{100}) = 12%</td>
<td>40 × (\frac{40}{100}) = 16%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Private employees</th>
<th>Private employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 × (\frac{5}{12}) = 20%</td>
<td>24 × (\frac{40}{100}) = 9.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unemployed</th>
<th>Unemployed</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 – 20 = 28%</td>
<td>24 – 9.6 = 14.4%</td>
</tr>
</tbody>
</table>

Given —
28% – 14.4% = 3400
13.6% = 3400
Government (male + female) employees
= 12% + 16%
= 28%
Government (male + female) employees = \(\frac{3400}{13.6} \times 28 = 7000 \)

59. Solution:
Let the number of individuals involved in election be x.
Percentage of those who were not vote = 100-(40+45) = 15%
The difference between those who voted
45% of x – 15% of x = 630
30% of x = 630
x = 630*100/30
= 2100.

60. Solution:
Weight of A and B are 3x and 5x.
Initial weight before increase = (132*100)/110 = 120
8x = 120. X = 15
Initial weight of A and B are 45 and 75 kg respectively.
New weight of A = 54 so weight of B = 132 – 54 = 78.
So % increase = \([(78-75)/75]*100 = 4 \% \).
We offers Huge range of Mock Tests for Various Government Exams

Visit: test.ambitiousbaba.com

Visit: ambitiousbaba.com
Get daily job Alerts, Quizzes for Bank, SSC, Railway, Free PDF's, GA Capsule, Monthly The Hindu Review PDF, MCQ’s CA PDF, One Liner PDF and many more for free....

For any Query/Doubt/ Suggestions do mail us at: contact@ambitiousbaba.com